miércoles, 28 de diciembre de 2011

Anime

sábado, 15 de mayo de 2010

DESCRIBIR EL MODELO OSI



Modelo OSI


-CAPAS


El modelo OSI surge como una búsqueda de solución al problema de incompatibilidad de las redes de los años 60. Fue desarrollado por la ISO (International Organization for Standardization) en 1977 y adoptado por UIT-T.

Consiste de una serie de niveles que contienen las normas funcionales que cada nodo debe seguir en la Red para el intercambio de información y la ínter- operabilidad de los sistemas independientemente de suplidores o sistemas. Cada nivel del OSI es un modulo independiente que provee un servicio para el nivel superior dentro de la Arquitectura o modelo.


El Modelo OSI se compone de los siete niveles o capas correspondientes:


Nivel Físico


Es el nivel o capa encargada del control del transporte físico de la información entre dos puntos. Define características funcionales, eléctricas y mecánicas tales como:


•Establecer, mantener y liberar las conexiones punto a punto y multipunto.


•Tipo de transmisión asincrónica o sincronía


•Modo de operación simplex, half-duplex, full dúplex.


•Velocidad de transmisión.


•Niveles de voltaje.


•Distribución de pines en el conector y sus dimensiones.


En este nivel se definen las interfaces, módem, equipos terminales de línea, etc. También son representativas de este nivel las recomendaciones del UIT-T, serie V para módem, interfaz V.24 no su equivalente RS-232C, las interfaces de alta velocidad V.35 o RS 449, las interfaces para redes de datos X.21 o las recomendaciones I.431 para RDSI.


Define la técnica o procedimiento de transmisión de la información a nivel de bloques de bits, o sea, la forma como establecer, mantener y liberar un enlace de datos ( en el caso del nivel 1 se refiere al circuito de datos), provee control del flujo de datos, crea y reconoce las delimitaciones de Trama.


Son representativos de este nivel los procedimientos o protocolos:


•BSC (Binary Synchronous Communication)


•HDLC (High Level Data Link Control)


•SDLC (Synchronous Data Link Control)


•DDCMP (Digital Data Communication Message Protocol)


La función mas importante de esta capa es la referida al control de errores en la transmisión entre dos puntos, proporcionando una transmisión libre de error sobre el medio físico lo que permite al nivel próximo mas alto asumir una transmisión virtualmente libre de errores sobre el enlace. Esta función esta dividida en dos tareas: detección y corrección de errores, entre la cual destaca la detección de errores por el método de chequeo de redundancia cíclica (CRC) y el método de corrección por retransmisión.


Nivel de Red


Destinado a definir el enrutamiento de datos en la red, así como la secuencial correcta de los mensajes. En este nivel se define la vía mas adecuada dentro de la red para establecer una comunicación ya que interviene en el enrutamiento y la congestión de las diferentes rutas.

Función importante de este nivel o capa es la normalización del sistema de señalización y sistema de numeraciones de terminales, elementos básicos en una red conmutada. En caso necesario provee funciones de contabilidad para fines de información de cobro.

Traduce direcciones lógicas o nombres en direcciones físicas. En un enlace punto a punto el nivel 3 es una función nula, o sea existe pero transfiere todos los servicios del nivel 2 al 4.


En el nivel 3 es representativa la recomendación X.25 del CCITT, que define el protocolo de intercambio de mensajes en el modo paquete.


Nivel de Transporte


En este nivel o capa se manejan los parámetros que definen la comunicación de extremo a extremo en la red:


•Asegura que los datos sean transmitidos libre de errores, en secuencia, y sin duplicación o perdida.


•Provee una transmisión segura de los mensajes entre Host y Host a través de la red de la misma forma que el Nivel de Enlace la asegura entre nodos adyacentes.


•Provee control de flujo extremo a extremo y manejo a extremo.


•Segmenta los mensajes en pequeños paquetes para transmitirlos y los reensambla en el host destino.


Nivel de Sesión


Es la encargada de la organización y sincronización del dialogo entre terminales. Aquí se decide por ejemplo, cual estación debe enviar comandos de inicio de la comunicación, o quien debe reiniciar si la comunicación se ha interrumpido. En general control la conexión lógica (no física ni de enlace).


Es importante en este nivel la sincronización y resincronizacion de tal manera que el estado asumido en la sesión de comunicación sea coherente en ambas estaciones. También, se encarga de la traducción entre nombres y base de datos de direcciones.


Nivel de Presentación


Este nivel o capa es el encargado de la representación y manipulación de estructuras de datos.


Establece la sintaxis (o forma) en que los datos son intercambiados. Representativos de este nivel son el terminal virtual (VM: Virtual Machine), formateo de datos , compresión de información, encriptamiento, etc.


Nivel de Aplicación


En este nivel el usuario ejecuta sus aplicaciones. Ejemplo de este nivel son las bases de datos distribuidas en lo referente a su soporte.


Se distinguen dos categorías: servicios que usan el modo conexión para operar en tiempo real y aquellos que usan modos de conexión retardados (no en tiempo real).


Algunas aplicaciones de este nivel son:


•Correo electrónico según recomendación X.400 de CCITT.


•Servicios interactivos, tales como transacciones bancarias, interrogación de bases de datos, procesamiento en tiempo compartido.


•Servicio teletex, en particular la transferencia de documentos según recomendación T60, T61 y T62 de CCITT.


Niveles de abstracción


En el campo de las redes informáticas, los protocolos se pueden dividir en varias categorías, una de las clasificaciones más estudiadas es la OSI


Nivel de aplicación


Aplicación


Capa 6 Nivel de presentación


Capa 5 Nivel de sesión


Capa 4 Nivel de transporte


Capa 3 Nivel de red


Transporte de datos


Capa 2 Nivel de enlace de datos


Capa 1 Nivel físico

DESCRIBIR LAS ARQUITECTURAS DE RED

Concepto de Arquitectura

La arquitectura de red es el medio mas efectivo en cuanto a costos para desarrollar e implementar un conjunto coordinado de productos que se puedan interconectar. La arquitectura es el “plan” con el que se conectan los protocolos y otros programas de software. Estos es benéfico tanto para los usuarios de la red como para los proveedores de hardware y software.


Características de la Arquitectura

•Separación de funciones
•Amplia conectividad.
•Recursos compartidos.
•Administración de la red.
•Facilidad de uso.

•Normalización.
•Administración de datos.
•Interfaces.
•Aplicaciones.

TIPOS DE ARQUITECTURAS

* ETHERNET

•Desarrollado por la compañía XERTOX y adoptado por la DEC (Digital Equipment Corporation), y la Intel, Ethernet fue uno de los primero estándares de bajo nivel.

Actualmente es el estándar mas ampliamente usado.

•Ethernet esta principalmente orientado para automatización de oficinas, procesamiento de datos distribuido, y acceso de terminal que requieran de una conexión económica a un medio de comunicación local transportando trafico a altas velocidades

•Este protocolo esta basado sobre una topología bus de cable coaxial, usando CSMA/CD para acceso al medio y transmisión en banda base a 10 MBPS. Además de cable coaxial soporta pares trenzados. También es posible usar Fibra Optica haciendo uso de los adaptadores correspondientes.

•Además de especificar el tipo de datos que pueden incluirse en un paquete y el tipo de cable que se puede usar para enviar esta información, el comité especifico también la máxima longitud de un solo cable (500 metros) y las normas en que podrían usarse repetidores para reforzar la señal en toda la red.


FUNCIONES

Encapsulación de datos
•Formación de la trama estableciendo la delimitación correspondiente
•Direccionamiento del nodo fuente y destino
•Detección de errores en el canal de transmisión

Manejo de Enlace
•Asignación de canal
•Resolución de contención, manejando colisiones

Codificación de los Datos
•Generación y extracción del preámbulo para fines de sincronización
•Codificación y decodificación de bits

Acceso al Canal
•Transmisión / Recepción de los bits codificados.
•Sensibilidad de portadora, indicando trafico sobre el canal
•Detección de colisiones, indicando contención sobre el canal

Formato de Trama

•En una red ethernet cada elemento del sistema tiene una dirección única de 48 bits, y la información es transmitida serialmente en grupos de bits denominados tramas. Las tramas incluyen los datos a ser enviados, la dirección de la estación que debe recibirlos y la dirección con la estación que los transmite.

•En caso de alguna interferencia durante la transmisión, las tramas son enviadas nuevamente cuando el medio esté disponible. Para recibir los datos, cada estación reconoce su propia dirección y acepta las tramas con esa dirección mientras ignora las demás.



* ARCNET:

La Red de computacion de recursos conectadas (ARCNET, Attached Resource Computing Network) es un sistema de red banda base, con paso de testigo (token) que ofrece topologias flexibles en estrella y bus a un precio bajo. Las velocidades de transmision son de 2.5 Mbits/seg. ARCNET usa un protocolo de paso de testigo en una topologia de red en bus con testigo, pero ARCNET en si misma no es una norma IEEE. En 1977, Datapoint desarrollo ARCNET y autorizo a otras compañias. En 1981, Standard Microsystems Corporation (SMC) desarrollo el primer controlador LAN en un solo chip basado en el protocolo de paso de testigo de ARCNET. En 1986 se introdujo una nueva tecnologia de configuracion de chip.


ARCNET tiene un bajo rendimiento, soporta longitudes de cables de hasta 2000 pies cuando se usan concentradores activos. Es adecuada para entrornos de oficina que usan aplicaciones basadas en texto y donde los usuarios no acceden frecuentemente al servidor de archivos. Las versiones mas nuevas de ARCNET soportan cable de fibra optica y de par-trenzado. Debido a que su esquema de cableado flexible permite de conexión largas y como se pueden tener configuraciones en estrella en la misma red de area local (LAN Local Area Network). ARCNET es una buena eleccion cuando la velocidad no es un factor determinante pero el precio si.


Ademas, el cable es del mismo tipo del que se utiliza para la conexión de determinales IBM 3270 a computadoras centrales de IBM y puede que va este colocado en algunos edificios.

ARCNET proporciona una red rebusta que no es tan susceptible a fallos como Ethernet de cable coaxial si el cable se suelta o se desconecta. Esto se debe particularmente a su topologia y a su baja velocidad de transferencia. Si el cable que une una estacion de trabajo a un concentrador se desconecta o corta, solo dicha estacion de trabajo se va a abajo, no la red entera. El protocolo de paso de testigo requiere que cada transaccion sea reconocida, de modo no hay cambios virtuales de errores, aunque el rendimiento es mucho mas bajo que en otros esquemas de conexión de red.





*TOKEN RING

Arquitectura de red desarrollada por IBM en los años 70's con topología lógica en anillo y técnica de acceso de paso de testigo. Token Ring se recoge en el estándar IEEE 802.5. En desuso por la popularización de Ethernet; no obstante, determinados escenarios, tales como bancos, siguen empleándolo.


El Token es una trama que circula por el anillo en su único sentido de circulación. Cuando una estación desea transmitir y el Token pasa por ella, lo toma. Éste sólo puede permanecer en su poder un tiempo determinado (10 ms). Tienen una longitud de 3 bytes y consiste en un delimitador de inicio, un byte de control de acceso y un delimitador de fin. En cuanto a los Frames de comandos y de datos pueden variar en tamaño, dependiendo del tamaño del campo de información. Los frames de datos tienen información para protocolos mayores, mientras que los frames de comandos contienen información de control.


Método de acceso al medio

El acceso al medio es determinado por el paso de testigo o token passing, como en Token_Bus o FDDI, a diferencia de otras redes de acceso no determinístico (estocástico, como Ethernet).


Características principales


•Utiliza una topología lógica en anillo, aunque por medio de una unidad de acceso de estación multiple (MSAU) , la red puede verse como si fuera una estrella. Tiene topología física estrella y topología lógica en anillo.


•Utiliza cable especial apantallado, aunque el cableado también puede ser par trenzado.


•La longitud total de la red no puede superar los 366 metros.


•La distancia entre una computadora y el MAU no puede ser mayor que 100 metros.


•A cada MAU se pueden conectar ocho computadoras.

•Estas redes alcanzan una velocidad máxima de transmisión que oscila entre los 4 y los 16 Mbps. *Posteriormente el High Speed Token Ring (HSTR) elevó la velocidad a 100 Mbps la mayoria de redes no la soportan.


VALORAR EL AMBIENTE FISICO


INSTALACION ELECTRICA

Se le llama instalación eléctrica al conjunto de elementos que permiten transportar y distribuir la energía eléctrica, desde el punto de suministro hasta los equipos que la utilicen. Entre estos elementos se incluyen: tableros, interruptores, transformadores, bancos de capacitares, dispositivos, sensores, dispositivos de control local o remoto, cables, conexiones, contactos, canalizaciones, y soportes.

En el presente trabajo se muestra la gran importancia de las instalaciones eléctricas, pues es de gran ayuda en la actualidad conocer como es que se lleva a cabo una instalación y conocer cada uno de sus elementos, como el relevador, elemento sumamente importante el cual cierra o abre independientemente los circuitos y de igual manera el principio de funcionamiento de cada uno de los elementos que componen una instalación eléctrica, de igual forma es interesante tener muy en cuenta cuales son los tipos que existen en la actualidad de las instalaciones, así como el riesgo que tenga cada una.

Las instalaciones eléctricas pueden ser abiertas (conductores visibles), aparentes (en ductos o tubos), ocultas, (dentro de paneles o falsos plafones), o ahogadas (en muros, techos o pisos) .







-CONTROL DE CONDICIONES AMBIENTALES

Las condiciones ambientales de trabajo son las circunstancias físicas en las que el empleado se encuentra cuando ocupa un cargo en la organización. Es el ambiente físico que rodea al empleado mientras desempeña un cargo.

Espacio Físico

El ambiente físico comprende todos los aspectos posibles, desde el estacionamiento situado a la salida de la fábrica hasta la ubicación y el diseño del edificio, sin mencionar otros como la luminosidad y el ruido que llegan hasta el lugar de trabajo de cada trabajo.
Y en el propio lugar de trabajo otros aspectos físicos pueden ocasionar malestar y frustración. En un estudio realizado, se consideraron en orden de importancia la ventilación, la calefacción y el sistema de aire acondicionado.
Otra causa frecuente de malestar la constituyen el número, la ubicación y las condiciones de los servicios sanitarios.

Iluminación

La intensidad, o grado de brillantez, es el factor que más a menudo se relaciona con la iluminación. No obstante, aún no se sabe hasta qué punto una buena iluminación contribuye al rendimiento. Sin duda el nivel óptimo depende de la índole de la tarea que va a ejecutarse.
Una luz demasiado brillante puede atenuarse o excluirse del campo visual del trabajador. A éste se le puede dar viseras o sombreadores. Pueden suprimirse las zonas demasiado reverberantes.

La distribución de la luz puede ser:


· Iluminación directa. la luz incide directamente sobre la superficie iluminada. Es la más económica y la más utilizada para grandes espacios.


· Iluminación indirecta. La luz incide sobre la superficie que va a ser iluminada mediante la reflexión en paredes y techos.


· Iluminación semiindirecta. Combina los dos tipos anteriores con el uso de bombillas translúcidas para reflejar la luz en el techo y en las partes superiores de las paredes, que la transmiten a la superficie que va a ser iluminada [iluminación indirecta]. De igual manera, las bombillas emiten cierta cantidad de luz directa [iluminación directa]; por tanto, existen dos efectos luminosos.


· Iluminación semidirecta. La mayor parte de la luz incide de manera directa en la superficie que va a ser iluminada [iluminación directa], y cierta cantidad de luz reflejan las paredes y el techo.


Ruido


El ruido se considera un sonido o barullo indeseable. Todavía no se sabe con certeza si merma la eficiencia del empleado, pues los datos son contradictorios.

La unidad básica para medir el ruido es el decibel [db]. Desde el punto de vista psicológico, es la medida de la intensidad subjetiva del sonido.El control de los ruidos busca la eliminación o, al menos, la reducción de los sonidos indeseables. Los ruidos industriales pueden ser:

· Continuos [máquinas, motores o ventiladores]


· Intermitentes [prensas, herramientas neumáticas, forjas]


· Variables [personas que hablan, manejo de herramientas o materiales]


El ruido demasiado intenso ocasiona otros daños fisiológicos. Al ser sometido a un ruido de 95 a 110 decibeles se constriñen los vasos sanguíneos, se alteran la frecuencia cardiaca y el riego sanguíneo. Se ha mencionado la posibilidad de que el ruido constante aumente la presión arterial. Con ruidos fuertes también se eleva la tensión muscular.

.Los métodos más usados para controlar los ruidos en la industria pueden incluirse en una de las cinco categorías siguientes:

· Eliminación del ruido en el elemento que lo produce, mediante la reparación o nuevo desempeño de la máquina, engranajes, poleas, correas, etc.


· Separación de la fuente del ruido, mediante pantallas o disposición de máquinas y demás equipos sobre soportes, filtros o amortiguadores de ruido.


· Aislamiento de la fuente de ruidos dentro de muros a prueba de ruidos.


· Tratamiento acústico de los techos, paredes y pisos para la absorción de ruidos.


· Equipos de protección individual [EPI], como el protector auricular.

En otros estudios se ha demostrado que la cantidad media de trabajo no recibe el influjo de ruidos intensos; en cambio la calidad del trabajo mostraba más variación en caso de tareas fáciles y monótonas y difíciles y complejas.
Los estudios prueban que la disminución del ruido no incrementa la productividad, pero sí reduce el número de errores.
Si no puede amortiguarse la fuente del ruido, la siguiente medida consistirá en proteger al personal mediante alguna protección de los oídos: tapones, audífonos o cascos.
Color
Se afirma que el color eleva la producción, aminora accidentes y errores, mejora la moral.
El color puede crear un ambiente laboral más agradable y mejorar la seguridad industrial.
Con el color también se evita la fatiga visual, puesto que cada matiz tiene diferentes propiedades de reflexión.
Los colores pueden crear ilusiones ópticas de tamaño y temperatura. Las paredes pintadas de colores claros comunican la sensación de mayor amplitud y apertura.

Música

Al parecer carece de confirmación la hipótesis de que con música se eleva la productividad en todo tipo de trabajo. El efecto de ella depende de la índole de las labores. Según datos de investigación, con la música se incrementa la productividad en tareas bastante sencillas, repetidas y que no requieran unidades de corta duración, en consecuencia, posiblemente la música se convierte en el foco de atención y hace que la jornada transcurra en forma más rápida y grata.
Temperatura y Humedad
Una de las condiciones ambientales importantes es la temperatura. Por otro lado, la humedad es consecuencia del alto grado de contenido higrométrico del aire.
Todos hemos sentido los efectos que la temperatura y humedad tienen en nuestro estado de ánimo, nuestra capacidad de trabajo e incluso en nuestro bienestar físico y mental. El estado del tiempo y la temperatura nos afectan en forma diferente.
Cuando se realiza trabajo bajo techo la temperatura y humedad se controlan bien, si es que la empresa está dispuesta a invertir bastante dinero y si las instalaciones se prestan a ello.
El cuerpo humano se adapta a muchas circunstancias. Podemos soportar temperaturas extremadamente altas y mantenemos la capacidad de trabajo en días calurosos y húmedos durante largos períodos.

Contaminación en lugares cerrados

Muchos edificios son lugares completamente cerrados, diseñados para impedir que penetre aire. No pueden abrirse las ventanas y los empleados sólo respiran aire filtrado, frío o caliente. Estos edificios constituyen un peligro para la salud.
En algunas investigaciones se ha comprobado que esta situación trae consigo enfermedades como cefaleas, problemas de sinusitis, reacciones cutáneas alérgicas y malestar general. También mareos y estupor.
Higiene
La higiene en el trabajo se refiere a un conjunto de normas y procedimientos tendientes a la protección de la integridad física y mental del trabajador, preservándolos de los riesgos de salud inherentes a las tareas del cargo y al ambiente físico donde se ejecutan. La higiene en trabajo está relacionada con el diagnostico y la prevención de enfermedades ocupacionales, a partir del estudio y el control de dos variables: El hombre y su ambiente de trabajo.


-NORMAS DE SEGURIDAD E HIGIENE


NORMAS DE SEGURIDAD E HIGIENE DE LA SALA DE CÓMPUTO

1.Limpiarse los zapatos antes de ingresar ala Sala de Computo.

2.Solo ingresaran los alumnos que estén correctamente uniformados y que tengan su franela y las manos limpias

3.Ingresar ordenadamente a la Sala de Computo y ubicarse en el lugar que le asigne el Profesor(a)

4.Todos los alumnos deben limpiar con su franela la computadora y mueble.

5.Los alumnos que ingreses en el primer turno deben doblar las fundas y colocarlos en el lugar adecuado. Luego prenderán el estabilizador, monitor y CPU(respectivamente)

6.Mantener la disciplina dentro y fuera de la aula

7.Mantener el orden del mobiliario y limpieza en la Sala de Computo

8.Espere su lugar las indicaciones del profesor. No toque la pantalla del monitor.

9.Durante el día de Computadora permanecerá prendida; si no muestra ninguna imagen solo pulse una tecla y espere.

10.Los alumnos que ingresen en el último turno deben apagar la computadora, el estabilizador y colocar la funda al monitor y teclado.

11.Solo con autorización y supervisión del Profesor(a) ingresaran al Internet o sus servicios como: Messenger, correo, Pagina Web, Blog, Álbum de fotos, etc.

12.Los dispositivos de almacenamiento como: Disquete, CD, USB, MP3, tarjeta SD, Micro SD, etc.Es necesario desinfectarlo con un antivirus bajo la supervisión del profesor(a).

13.No modificar ni cambiar la imagen del escritorio, ni el protector de pantalla, ni las propiedades de pantalla, Si el docente autoriza del cambio, debe dejarlo como lo encontró.

14.Si detecta un desperfecto o anomalía, comunicar inmediatamente al profesor(a) a cargo.

15.Siempre guarde una copia de su trabajo en un dispositivo de almacenamiento externo y luego guarde en la unidad E dentro de la carpeta del profesor(a) y en su año correspondiente.

16.Utilizar correctamente y responsable las computadoras, dedicando su tiempo exclusivamente a realizarse su trabajo y/o temas educativos.

17.Concluido su turno salir del aula ordenadamente dejando ordenado y limpio la computadora y su mueble.


Todo usuario de este servicio debe cumplir las NORMAS DE SEGURIDAD E HIGIENE de la Sala de Computo de lo contrario será sancionado de acuerdo al Reglamento Interno de la Institución Educativa

-SISTEMA DE CABLEADO ESTRUCTURADO


Es el sistema colectivo de cables, canalizaciones, conectores, etiquetas, espacios y demás dispositivos que deben ser instalados para establecer una infraestructura de telecomunicaciones genérica en un edificio o campus. Las características e instalación de estos elementos se debe hacer en cumplimiento de estándares para que califiquen como cableado estructurado.


El cableado estructurado consiste en el tendido de cables en el interior de un edificio con el propósito de implantar una red de área local. Suele tratarse de cable de par trenzado de cobre, para redes de tipo IEEE 802.3. No obstante, también puede tratarse de fibra óptica o cable coaxial.


El tendido de cierta complejidad cuando se trata de cubrir áreas extensas tales como un edificio de varias plantas. En este sentido hay que tener en cuenta las limitaciones de diseño que impone la tecnología de red de área local que se desea implantar:



Salvando estas limitaciones, la idea del cableado estructurado es simple:



  • Tender cables en cada planta del edificio.

  • Interconectar los cables de cada planta.


Cableado horizontal o "de planta"



· Todos los cables se concentran en el denominado armario de distribución de planta o armario de telecomunicaciones. Se trata de un bastidor donde se realizan las conexiones eléctricas (o "empalmes") de unos cables con otros. En algunos casos, según el diseño que requiera la red, puede tratarse de un elemento activo o pasivo de comunicaciones, es decir, un hub o un switch. En cualquier caso, este armario concentra todos los cables procedentes de una misma planta. Este subsistema comprende el conjunto de medios de transmisión (cables, fibras, coaxiales, etc.) que unen los puntos de distribución de planta con el conector o conectores del puesto de trabajo. Ésta es una de las partes más importantes a la hora del diseño debido a la distribución de los puntos de conexión en la planta, que no se parece a una red convencional en lo más mínimo.



Cableado vertical, troncal o backbone



· Después hay que interconectar todos los armarios de distribución de planta mediante otro conjunto de cables que deben atravesar verticalmente el edificio de planta a planta. Esto se hace a través de las canalizaciones existentes en el edificio. Si esto no es posible, es necesario habilitar nuevas canalizaciones, aprovechar aberturas existentes (huecos de ascensor o escaleras), o bien, utilizar la fachada del edificio (poco recomendable). En los casos donde el armario de distribución ya tiene electrónica de red, el cableado vertical cumple la función de red troncal. Obsérvese que éste agrega el ancho de banda de todas las plantas. Por tanto, suele utilizarse otra tecnología con mayor capacidad. Por ejemplo, FDDI o Gigabit Ethernet.



Cuarto principal de equipos y de entrada de servicios



· El cableado vertical acaba en una sala donde, de hecho, se concentran todos los cables del edificio. Aquí se sitúa la electrónica de red y otras infraestructuras de telecomunicaciones, tales como pasarelas, puertas de enlace, cortafuegos, central telefónica, recepción de TV por cable o satélite, etc., así como el propio Centro de proceso de datos (es aplicable).


viernes, 30 de abril de 2010

TECNOLOGIAS Y SISTEMAS DE COMUNICACION Y ENRUTAMIENTO

Las redes actuales sufren, frecuentemente, de congestión y colapsos importantes. Estos se producen no solo en grandes redes, sino también y especialmente cuando por ellas circula tráfico que hasta hace poco no era habitual, como son gráficos, vídeo y audio, y en definitiva cualquier aplicación de mensajería electrónica y multimedia. A ello colabora el imparable incremento de prestaciones de las estaciones de trabajo y otros tipos de nodos existentes en las redes.Los 2 Mbps. de las redes Arcnet han sido ampliamente superados por los 4 y 16 Mbps. de Token Ring y los 10 Mbps. de Ethernet, y todo ello en un corto espacio de tiempo, y más aún, en los últimos meses prácticamente, oímos hablar de Fast Ethernet (100 Mbps.), y como no, ATM (desde 155 hasta 622 Mbps.).Sin embargo, cabe preguntarse si realmente precisamos estas velocidades entre todos los puntos de la red, o si nuestras redes actuales pueden seguir cumpliendo sus cometidos e incluso permitir las nuevas aplicaciones de videoconferencia, excepto en puntos concretos (servidores), hacia donde el tráfico esta centralizado.Además, hay que tener en cuenta que, por ejemplo en una red Ethernet de 10 Mbps., en la que existan 10 nodos que generen una cantidad de tráfico similar, el ancho de banda, o por decirlo de un modo más comprensible, la velocidad media a la que dichos puestos de trabajo acceden en la actualidad a la red, es de 1 Mbps. Esto es lo que podemos denominar "ancho de banda compartido", que es la oferta de las redes actuales.Pero, ¿ Que ocurriría si, por ejemplo, lográsemos que todo el ancho de banda que Ethernet nos permite, 10 Mbps., pudiera estar disponible en todo momento a cada uno de los puestos de la red ?. La respuesta es sin duda, que en la mayoría de los casos y en gran parte de las redes de pequeño y medio tamaño, sería suficiente y no requeriría cambiar toda la estructura de la red hacia las nuevas tecnologías como las que Fast Ethernet y ATM nos proponen.


REPETIDOR

Un repetidor es un dispositivo electrónico que recibe una señal débil o de bajo nivel y la retransmite a una potencia o nivel más alto, de tal modo que se puedan cubrir distancias más largas sin degradación o con una degradación tolerable.
El término repetidor se creó con la
telegrafía y se refería a un dispositivo electromecánico utilizado para regenerar las señales telegráficas. El uso del término ha continuado en telefonía y transmisión de datos.
En
telecomunicación el término repetidor tiene los siguientes significados normalizados:
Un dispositivo
analógico que amplifica una señal de entrada, independientemente de su naturaleza (analógica o digital).
Un dispositivo
digital que amplifica, conforma, retemporiza o lleva a cabo una combinación de cualquiera de estas funciones sobre una señal digital de entrada para su retransmisión.
En el modelo de referencia
OSI el repetidor opera en el nivel físico.
En el caso de señales digitales el repetidor se suele denominar
regenerador ya que, de hecho, la señal de salida es una señal regenerada a partir de la de entrada.
Los repetidores se utilizan a menudo en los
cables transcontinentales y transoceánicos ya que la atenuación (pérdida de señal) en tales distancias sería completamente inaceptable sin ellos. Los repetidores se utilizan tanto en cables de cobre portadores de señales eléctricas como en cables de fibra óptica portadores de luz.
Los repetidores se utilizan también en los servicios de
radiocomunicación. Un subgrupo de estos son los repetidores usados por los radioaficionados.
Asimismo, se utilizan repetidores en los enlaces de telecomunicación punto a punto mediante radioenlaces que funcionan en el rango de las
microondas, como los utilizados para distribuir las señales de televisión entre los centros de producción y los distintos emisores o los utilizados en redes de telecomunicación para la transmisión de telefonía.
En comunicaciones ópticas el término repetidor se utiliza para describir un elemento del equipo que recibe una señal óptica, la convierte en eléctrica, la regenera y la retransmite de nuevo como señal óptica. Dado que estos dispositivos convierten la señal óptica en eléctrica y nuevamente en óptica, estos dispositivos se conocen a menudo como
repetidores electroópticos.



ENRUTADOR

El enrutador (calco del inglés router), direccionador, ruteador o encaminador es un dispositivo de hardware para interconexión de red de ordenadores que opera en la capa tres (nivel de red). Un enrutador es un dispositivo para la interconexión de redes informáticas que permite asegurar el enrutamiento de paquetes entre redes o determinar la ruta que debe tomar el paquete de datos.

A pesar de que tradicionalmente los enrutadores solían tratar con redes fijas (Ethernet, ADSL, RDSI...), en los últimos tiempos han comenzado a aparecer enrutadores que permiten realizar una interfaz entre redes fijas y móviles (Wi-Fi, GPRS, Edge, UMTS,Fritz!Box, WiMAX...) Un enrutador inalámbrico comparte el mismo principio que un enrutador tradicional. La diferencia es que éste permite la conexión de dispositivos inalámbricos a las redes a las que el enrutador está conectado mediante conexiones por cable. La diferencia existente entre este tipo de enrutadores viene dada por la potencia que alcanzan, las frecuencias y los protocolos en los que trabajan.
En wifi estas distintas diferencias se dan en las denominaciones como clase a/b/g/ y n.




CONCENTRADOR
Un concentrador o hub es un dispositivo que permite centralizar el cableado de una red y poder ampliarla. Esto significa que dicho dispositivo recibe una señal y repite esta señal emitiéndola por sus diferentes puertos.

Un concentrador funciona repitiendo cada paquete de datos en cada uno de los puertos con los que cuenta, excepto en el que ha recibido el paquete, de forma que todos los puntos tienen acceso a los datos. También se encarga de enviar una señal de choque a todos los puertos si detecta una colisión. Son la base para las redes de topología tipo estrella. Como alternativa existen los sistemas en los que los ordenadores están conectados en serie, es decir, a una línea que une varios o todos los ordenadores entre sí, antes de llegar al ordenador central. Llamado también repetidor multipuerto, existen 3 clases.
Pasivo: No necesita energía eléctrica. Se dedica a la interconexion.
Activo: Necesita alimentación. Además de concentrar el cableado, regeneran la señal, eliminan el ruido y amplifican la señal
Inteligente: También llamados smart hubs son hubs activos que incluyen microprocesador.
Dentro del modelo
OSI el concentrador opera a nivel de la capa física, al igual que los repetidores, y puede ser implementado utilizando únicamente tecnología analógica. Simplemente une conexiones y no altera las tramas que le llegan.




CONMUTADOR O SWITCH

Un conmutador o switch es un dispositivo digital de lógica de interconexión de redes de computadores que opera en la capa 2 (nivel de enlace de datos) del modelo OSI. Su función es interconectar dos o más segmentos de red, de manera similar a los puentes (bridges), pasando datos de un segmento a otro de acuerdo con la dirección MAC de destino de las tramas en la red.

Atendiendo al método de direccionamiento de las tramas utilizadas:

Store-and-Forward
Los switches Store-and-Forward guardan cada trama en un buffer antes del intercambio de información hacia el puerto de salida. Mientras la trama está en el buffer, el switch calcula el CRC y mide el tamaño de la misma. Si el CRC falla, o el tamaño es muy pequeño o muy grande (un cuadro Ethernet tiene entre 64 bytes y 1518 bytes) la trama es descartada. Si todo se encuentra en orden es encaminada hacia el puerto de salida.
Este método asegura operaciones sin error y aumenta la confianza de la red. Pero el tiempo utilizado para guardar y chequear cada trama añade un tiempo de demora importante al procesamiento de las mismas. La demora o delay total es proporcional al tamaño de las tramas: cuanto mayor es la trama, mayor será la demora.

Cut-Through
Los Switches Cut-Through fueron diseñados para reducir esta latencia. Esos switches minimizan el delay leyendo sólo los 6 primeros bytes de datos de la trama, que contiene la dirección de destino MAC, e inmediatamente la encaminan.
El problema de este tipo de switch es que no detecta tramas corruptas causadas por colisiones (conocidos como runts), ni errores de CRC. Cuanto mayor sea el número de colisiones en la red, mayor será el ancho de banda que consume al encaminar tramas corruptas.
Existe un segundo tipo de switch cut-through, los denominados fragment free, fue proyectado para eliminar este problema. El switch siempre lee los primeros 64 bytes de cada trama, asegurando que tenga por lo menos el tamaño mínimo, y evitando el encaminamiento de runts por la red.

Adaptative Cut-Through
Los switches que procesan tramas en el modo adaptativo soportan tanto store-and-forward como cut-through. Cualquiera de los modos puede ser activado por el administrador de la red, o el switch puede ser lo bastante inteligente como para escoger entre los dos métodos, basado en el número de tramas con error que pasan por los puertos.
Cuando el número de tramas corruptas alcanza un cierto nivel, el switch puede cambiar del modo cut-through a store-and-forward, volviendo al modo anterior cuando la red se normalice.
Los switches cut-through son más utilizados en pequeños grupos de trabajo y pequeños departamentos. En esas aplicaciones es necesario un buen volumen de trabajo o
throughput, ya que los errores potenciales de red quedan en el nivel del segmento, sin impactar la red corporativa.

Los switches store-and-forward son utilizados en redes corporativas, donde es necesario un control de errores.

Atendiendo a la forma de segmentación de las sub-redes:

Switches de Capa 2 o Layer 2 Switches
Son los switches tradicionales, que funcionan como puentes multi-puertos. Su principal finalidad es dividir una LAN en múltiples dominios de colisión, o en los casos de las redes en anillo, segmentar la LAN en diversos anillos. Basan su decisión de envío en la dirección MAC destino que contiene cada trama.

Los switches de nivel 2 posibilitan múltiples transmisiones simultáneas sin interferir en otras sub-redes. Los switches de capa 2 no consiguen, sin embargo, filtrar difusiones o broadcasts, multicasts (en el caso en que más de una sub-red contenga las estaciones pertenecientes al grupo multicast de destino), ni tramas cuyo destino aún no haya sido incluido en la tabla de direccionamiento.

Switches de Capa 3 o Layer 3 Switches
Son los switches que, además de las funciones tradicionales de la capa 2, incorporan algunas funciones de
enrutamiento o routing, como por ejemplo la determinación del camino basado en informaciones de capa de red (capa 3 del modelo OSI), validación de la integridad del cableado de la capa 3 por checksum y soporte a los protocolos de routing tradicionales (RIP, OSPF, etc)
Los switches de capa 3 soportan también la definición de redes virtuales (
VLAN's), y según modelos posibilitan la comunicación entre las diversas VLAN's sin la necesidad de utilizar un router externo.
Por permitir la unión de segmentos de diferentes dominios de difusión o broadcast, los switches de capa 3 son particularmente recomendados para la segmentación de redes
LAN muy grandes, donde la simple utilización de switches de capa 2 provocaría una pérdida de rendimiento y eficiencia de la LAN, debido a la cantidad excesiva de broadcasts.
Se puede afirmar que la implementación típica de un switch de capa 3 es más escalable que un router, pues éste último utiliza las técnicas de enrutamiento a nivel 3 y encaminamiento a nivel 2 como complementos, mientras que los switches sobreponen la función de enrutamiento encima del encaminamiento, aplicando el primero donde sea necesario.
Dentro de los Switches Capa 3 tenemos:
Paquete-por-Paquete (Packet by Packet)

Básicamente, un switch Packet By Packet es un caso especial de switch Store-and-Forward pues, al igual que éstos, almacena y examina el paquete, calculando el CRC y decodificando la cabecera de la capa de red para definir su ruta a través del protocolo de enrutamiento adoptado.

Layer-3 Cut-through
Un switch Layer 3 Cut-Through (no confundir con switch Cut-Through), examina los primeros campos, determina la dirección de destino (a través de la información de los headers o cabeceras de capa 2 y 3) y, a partir de ese instante, establece una conexión punto a punto (a nivel 2) para conseguir una alta tasa de transferencia de paquetes.
Cada fabricante tiene su diseño propio para posibilitar la identificación correcta de los flujos de datos. Como ejemplo, tenemos el "IP Switching" de Ipsilon, el "SecureFast Virtual Networking de Cabletron", el "Fast IP" de 3Com.
El único proyecto adoptado como un estándar de hecho, implementado por diversos fabricantes, es el MPOA (Multi Protocol Over ATM). El MPOA, en desmedro de su comprobada eficiencia, es complejo y bastante caro de implementar, y limitado en cuanto a backbones ATM.
Además, un switch Layer 3 Cut-Through, a partir del momento en que la conexión punto a punto es establecida, podrá funcionar en el modo "Store-and-Forward" o "Cut-Through"
Switches de Capa 4 o Layer 4 Switches

Están en el mercado hace poco tiempo y hay una controversia en relación con la adecuada clasificación de estos equipos. Muchas veces son llamados de Layer 3+ (Layer 3 Plus).
Básicamente, incorporan a las funcionalidades de un switch de capa 3 la habilidad de implementar la políticas y filtros a partir de informaciones de capa 4 o superiores, como puertos TCP/UDP, SNMP, FTP, etc.